Back 日本語ページに戻る

Thesis: Polish groups of finite type and their Lie algebras


  1. H. Ando, Y. Matsuzawa, When does the Weyl-von Neumann Theorem hold?
    arXiv:1703.01695 (3 pages)

  2. H. Ando, Y. Matsuzawa, A. Thom and A. Törnquist, Unitarizability, Maurey-Nikishin factorization and Polish groups of finite type
    arXiv:1605.06909 (27 pages)

Published or Accepted for Publication
  1. H. Ando and E. Kirchberg, Non-commutativity of the central sequence algebra for separable non-type I C$^{\ast}$-algebras
    arXiv:1510.00468, Journal of the London Mathematical Society 94 (1) (2016), 280-294. (publihsed online)

  2. H. ando and Y. Matsuzawa, On Borel equivalence relations related to self-adjoint operators,
    arXiv:1405.0860 (10 pages) Journal of Operator Theory 74:1 (2015), 183--194.

  3. H. Ando and Y. Matsuzawa, Weyl-von Neumann theorem and Borel complexity of unitary equivalence modulo compacts of self-adjoint operators
    arXiv:1402.6947 The Royal Society of Edinburgh Proceedings A (Mathematics) 145 A (2015), 1115--1144.
    Note: The published version is shorter than arXiv version.

  4. H. Ando, U. Haagerup and C. Winslow, Ultraproducts, QWEP von Neumann algebras, and the Effros-Maréchal topology
    arXiv:1306.0460. To appear in Journal für die reine und angewandte Mathematik. DOI: 10.1515/crelle-2014-0005 published online (20 pages)

  5. H. Ando and U. Haagerup, Ultraproducts of von Neumann algebras
    arXiv:1212.5457v3. Journal of Functional Analysis, vol. 266 (2014), 6842--6913. link (72 pages)

  6. H. Ando, I. Ojima and H. Saigo, Notes on the Krupa-Zawisza ultrapower of self-adjoint operators
    arXiv:1305.1827 Probability and Mathematical Statistics vol. 34 Fasc.1 (2014), 147 -- 159

  7. H. Ando and Y. Matsuzawa, On Polish Groups of Finite Type
    Publ. RIMS vol. 48, Issue 2, (2012), 389--408.

  8. H. Ando and Y. Matsuzawa, Lie Group-Lie Algebra Correspondences of Unitary Groups in Finie von Neumann Algebras
    Hokkaido Math. J. vol. 41, no. 1 (2012), 31--99.

  9. H. Ando, On the local structure of the representation of a local gauge group
    Infinite Dimensional Analysis, Quantum Probability and related topics, vol. 13, issue: 2 (2010), 223--242.
    Note: This article was unfortunately published under the wrong author's name ``A. Hiroshi" (the other way around!).
  1. H. Ando and Y. Matsuzawa, On Popa's Embedding Problem,
    proceedings of “Hierarchy in Physics through Information - Its Control and Emergence", at Yukawa Institute for Theoretical Physics.
    Soryushiron Kenkyu vol. 13 (2012) online pdf 179--204. available online

  2. H. Ando and Y. Matsuzawa, Existence of Infinite Dimensional Lie Algebra for a Unitary Group on a Hilbert Space and Related Aspects,
    proceedings of 13th Workshop: Non-commutative Harmonic Analysis, Banach Center Publ. 96 (2012), 35-50.

  3. H. Ando, Ge-jigun no energy hyougen no daisuukouzou ni tuite (in Japanese),
    proceedings of RIMS workshop Non-commutative Analysis and Micro-Macro Duality, RIMS kokyuroku vol. 1658, 265-273, (2009)

Last updated: 8.3.2017

inserted by FC2 system